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Abstract—Remote sensing image scene classification has at-
tracted great attention because of its wide applications. Although
convolutional neural network (CNN) based methods for scene
classification have achieved excellent results, the large scale
variation of the features and objects in remote sensing images
limits the further improvement of the classification performance.
To address this issue, we present multi-scale representation for
scene classification, which is realized by a global-local two-
stream architecture. This architecture has two branches of global
stream and local stream, which can individually extract the
global features and local features from the whole image and
the most important area. In order to locate the most important
area in the whole image using only image-level labels, a weakly-
supervised key area detection strategy of structured key area
localization (SKAL) is specially designed to connect the above two
streams. To verify the effectiveness of the proposed SKAL based
two-stream architecture, we conduct comparative experiments
based on three widely used CNN models, including AlexNet,
GoogleNet and ResNet18, on four public remote sensing image
scene classification data sets, and achieve the state-of-the-art
results on all the four data sets. Our codes will be provided
in https://github.com/hw2hwei/SKAL.

Index Terms—remote sensing, scene classification, CNN, multi-
scale representation, structured key area localization

I. INTRODUCTION

ENEFITING from the remote sensing imaging equip-

ments and technologies, in recent years, many semantic-
level tasks of remote sensing images have developed rapidly,
such as object detection [1], image retrieval [2], image cap-
tioning [3] [4], road extraction [5] and the others. As a basis
for these tasks, remote sensing image scene classification [6]—
[10] has become a research hotspot, which classifies remote
sensing images into a set of scene classes according to the
features and objects in the images.

There are plenty of similar and confusing features and
objects in remote sensing images, and therefore it is cruical
to extract discriminative features of remote sensing scences.
According to feature extraction, there are two kinds of super-
vised features: handcrafted features and deep features. Com-
pared with handcrafted features, deep features contain more
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high-level semantic information, which can be automatically
learned by convolutional neural networks (CNNs). Due to the
powerful ability of feature extraction, CNN-based methods
[6], [8], [9], [11]-[14] have become the mainstream methods
and achieved the state-of-the-art results in the field of remote
sensing image scene classification.

Although the performance of CNN-based methods has
improved significantly, scene classification of remote sensing
images still suffers from the large scale variation of features
and objects in the images. As shown in the images of Fig.
1, the most important areas occupy only a small part of the
whole images, and they are usually surrounded by a large
number of useless features and objects, which decreases the
discrimination of the extracted features.

(b) lake (c) island (d) intersection

(a) airplane

Fig. 1: Some samples of remote sensing scene images with
the bounding boxes labeling the key area.

To tackle this issue, we present joint global and local feature
representation for remote sensing image scene classification.
As shown in Fig. 2, we design a global-local two-stream
architecture. In this architecture, the blue branch network is the
global feature extraction stream and the green branch network
is the local feature extraction stream. The global area contains
more global features such as contour and texture information,
while the key local area enlarges the most important objects
which can provide more fine-grained features and reduce
background noise. Our global-local two-stream architecture
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can individually extract global features and local features from

the input images of different scales, and finally fuse their

classification scores.

In order to locate the most important local area in the
whole image, we further propose a weakly-supervised key area
detection strategy of structured key area localization (SKAL)
as the yellow route in Fig. 2. The proposed SKAL defines an
explicit local key area localization process based on the feature
response degree of the patches in global feature maps. It can
accurately locate the most important area, i.e. its boundary of
[1, 22, Y1, y2], using only image-level labels.

To verify the effectiveness of the proposed SKAL based
global-local two-stream architecture in remote sensing image
scene classification, the abundant comparative experiments
based on three widely used CNN models (Alexnet [15],
ResNet18 [16] and GoogleNet [17]) are conducted on four
public large-scale remote sensing scene data sets including
UC Merced data set [18], RSSCN7 data set [19], AID data
set [20], and NWPU-RESISC45 data set [21]. We achieve the
state-of-the-arts on all the four data sets.

The contributions of this paper can be summarized as the
following four aspects:

(1) To deal with the problem of large scale variation in
remote sensing images, we present joint global and local
feature representation for remote sensing image scene
classification from the perspective of multi-scale feature.
Correspondingly, a global-local two-stream architecture is
designed to individually extract global features and local
features from the input images of different scales.

(2) To locate the most important area in the whole remote
sensing scene image, a strategy of structured key area
localization (SKAL) is specially proposed to connect the
global and local streams. SKAL can accurately calculate
the most important local area in the form of bounding
box [x1, T2, Y1, Y2].

(3) In order to prove the effectiveness of our SKAL based
global-local two-stream architecture in remote sensing
images, plenty of comparative experiments based on
several widely used CNN models are conducted on four
public scene classification data sets of remote sensing
images. The state-of-the-art results demonstrate that our
method can significantly improve the performance of
remote sensing scene classification.

(4) As a multi-scale representation learning method, our
global-local two-stream architecture can easily be applied
in all kinds of CNN models, as with the advantages of
simple implementation, fast operation and strong inter-
pretability.

II. RELATED WORK

In this section, the related works of remote sensing image
scene classification and weakly-supervised key object detec-
tion methods are reviewed in brief.

A. Remote Sensing Image Scene Classification

According to the feature extraction, the methods used in
scene classification of remote sensing images can be roughly
split into the following three types.

1) Handcrafted Features: The handcrafted feature based
methods were first applied in remote sensing image scene clas-
sification. These methods rely on a series of manually designed
feature descriptors including global feature descriptors (such
as color histograms and texture descriptors [22], [23]), and
local features descriptors (such as Histogram of Oriented Gra-
dients (HOG) [24], [25] and Scale-Invariant Feature Transform
(SIFT) [26], [27]). Global feature descriptors can generate the
entire representation of a remote sensing image, which can
be directly sent into the classifier. Local feature descriptors,
which are usually the mid-level feature descriptors, need to
be integrated into an global representation by feature com-
bination technologies like bag-of-visual-words (BoVW) [28].
Further, Zhu et al. [29] propose a local-global feature fusion
operation at the histogram level. These handcrafted features
are well-designed, however, they cannot effectively deal with
the challenges of intraclass diversity, interclass similarity and
scale variation.

2) Unsupervised Features: Classification is intrinsically a
supervised task but researchers also find ways to interpret
unsupervised learning results as classes. Researchers have
attempted unsupervised feature learning based methods [30]-
[34], which aim at learning the feature encoding functions.
For these unsupervised feature learning based methods, they
take the handcrafted feature descriptors like SIFT as input, and
generate the fused features. It is crucial to combine multiple
features by using some encoding techniques. The typeical
encoding methods used in remote sensing image scene classifi-
cation include Principal Component Analysis (PCA), k-means
clustering, sparse coding [32] and autoencoder [35]. What’s
more, BoVW [25], which can generate the visual dictionaries
(codebooks) from the handcrafted features based on k-means
clustering, is also one of the most popular unsupervised feature
learning based methods. However, overall the unsupervised
methods cannot generate the same discriminate features of
different scene classes as the supervised features because of
the lack of labels.

3) Deep Features: In recent years, deep learning methods,
especially Convolutional Neural Networks (CNNs) [6], [8],
[9], [11]-[14], [36]-[38], have dominated the most fields of
natural images because of their powerful large-scale feature
extraction. Similarly, deep feature based methods methods
have become the mainstream of remote sensing image scene
classification with the better classification performance than
the handcrafted and unsupervised features. Compared with
handcrafted feature-based methods that generally are deter-
mined by feature engineering skills and domain acknowledge,
deep feature based methods can automatically learn the most
discriminative semantic-level features from the raw images.
Besides, the CNN models are the end-to-end trainable ar-
chitectures instead of the complex multi-stage architectures,
which are the main workflows of handcrafted feature based
methods. Although deep feature based methods have obtained
the excellent performance, the large scale variation is still one
of the most difficult problems to solve.
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Fig. 2: SKAL based global-local two-stream architecture is designed for joint global and local feature representation in remote

sensing scene image classification.

B. Weakly-Supervised Object Detection

Weakly-supervised object detection, which locates the most
important local area using only image-level labels, is a
meaningful research subject. It can not only increase the
interpretability of our scene classification models, but also
be used for further improving their performance. Pandey et.
al [39] achieve weakly-supervised object detection based on
the handcrafted feature of deformable part models (DPM).
To make full use of the advantages of convolutional fea-
tures, Bilen et. al [40] propose weakly-supervised deep de-
tection networks to locate the key objects. And Cinbis et.
al [41] introduce the multiple instance learning into weakly-
supervised objection detection. Besides, Zhang et. al [42]
bring the saliency detection into this field. Further, Fu et.
al [43] realize a learnable key object localization network
of Recurrent Attention Convolutional Neural Network (RA-
CNN) for fine-grained image recognition and get significant
gains. The clustering learning technology is also attempted
in [44]. Recently, Yang et. al [45] proposed spatial prior for
the object dependence for joint object detection and action
classification.

For remote sensing images, however, there are lots of large-
scale features and objects containing background noise. To
deal with these complicated scene images, motivated by the
idea of multi-scale feature representation in RA-CNN, we
design a key area localization strategy of SKAL to generate
the minimum area boundary to sample the most important area
in the whole image. There are three main differences between
the proposed SKAL and RA-CNN: (1) The proposed SKAL
is a relatively interpretable key area localization srategy to
some extent while RA-CNN utilizes an attention proposal sub-

network (ATN), which also belongs to the black-box model, to
predict the key area. (2) Size of the key area located by SKAL
can be controlled artificially by adjusting a hyperparameter,
while the RA-CNN is hard to realize it. Because the remote
sensing image scene classification is the basic of other further
remote sensing image processing tasks, the controllable size
may be more suitable for the further image processing. (3) It
is necessary for RA-CNN to set an extra inter-scale pairwise
ranking loss which is used to constrain the location process
and an subtle g alternative training strategy. For our SKAL,
the training of two streams is independently and is easier to
realize.

There is some connection between the proposed SKAL and
a series of region-proposal objection detection methods [46]—
[48] under the demand of area location. The difference is that
these object detection methods need accurate bounding boxes
of the interest objects while the proposed SKAL has no need
for them.

III. METHOD

In this section, firstly, the compositions of convolutional
neural networks are sequentially introduced. Then the pro-
posed SKAL strategy based on the global multi-layer feature
map is introduced in detail in Fig. 3. Finally, as shown in
Fig. 2, we put forward the SKAL based global-local two-
stream architecture to individually extract the global and local
features, and fuse their classification scores.

A. CNN

Generally, an entire CNN model for image classification
can be roughly divided into three parts: stacked convolutional
layers, global average pooling layer and fully-connected layer.
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Fig. 3: Workflow of the proposed SKAL strategy.

Stacked Convolutional Layers. In CNNs, the multiple
stacked convolutional layers are the most important parts
used to extract features from low-level texture and color
characteristics to high-level semantic information. Each con-
volutional layer normally consists of convolutional kernels and
non-linear activation function (in some cases there is also
batch normalization [49]). Because the convolutional layers
of different models are stacked in different ways, it is hard
to respectively describe their architectures. Thus, they are
described as a unified ConvBlocks to roughly represent the
process of feature extraction in this paper. The input of these
stacked convolutional layers is a RGB image I € R3*224x224
and the output is the multi-layer feature map M € RE*HxW
(C,H and W are the number of channels, spatial height and
spatial width respectively). It is denoted as:

M = ConvBlocks(I), (1)

Global Average Pooling Layer. Because the multi-layer
feature map M distributes in spatial in units of patches, it is
necessary to pool the feature map M into the corresponding
feature vector V € RC for the next classifier (fully-connected
layer). Thus, global pooling layer, mostly global average
pooling (GAP) layer, is used to connect the convolutional
layers and fully-connected layer, which is calculated by:

Vie) = ﬁZZM(am), @)

i=0 j=0

GAP can not only change the spatial dimension of features,
but also decrease the overfitting of the trainable parameters.

Fully-connected Layer. Fully-connected (FC) layer plays
the role of classifier in CNNs, which gives the classification
score of each class based on the high-dimension feature vector
V. It takes as input the V' and takes as output a score vector
of classification confidence denoted as S € RY, where N is
the number of classes in data set. It is calculated by:

S=WTxV +b, 3)

here W € RN and b € RV are the weight and bias of the
features V, respectively. The element of S is the classification
score of each class. In order to scale the sum of S to 1,
the operation of softmax is added after the FC layer. It is

formulated as:
- e

i = 2?21 65'_7' )

S € R is the scaled classification score.

The cascade of convolutional layers, GAP layer and FC
layer is the entire CNN models for classification task. And it
is also the structure of each stream in our global-local two-
stream architecture.

4)

B. SKAL

The most critical step is to localize the key area in the
global image, which plays a role of a bridge between the
global and local streams. As shown in Fig 3, we propose
the SKAL strategy in detail in this subsection. Based on the
multi-layer feature map of global image of M,, which is
calculated by Eqn (1)-(3) from the global image, the proposed
SKAL generates a bounding box of [z1,x2,y1,y2] to guide
the sampling process. SKAL consists of the following three
substeps: energy aggregation, energy map structuration and
greedy-like boundary search.

1) Energy Aggregation: It is prerequisite to quantitatively
describe the importance degree of each patch in M. In this
paper, the operation of energy aggregation, which takes M,
as input and takes the energy map of My € R¥*W as output,

is applied as:
c

Mg =Y M,(i, H,W), (5)
i=0
here it is notable that energy aggregation can be regarded as a
kind of explicit attention mechanism without the requirement
for training.
It is necessary to scale all the elements of My into the
range of [0, 1] by min-max scaling, which can remove the
interference from the negative element.

- Mg(i) — min(M
Vg (i) = —2eld) — min(Mp)
max(Mg) — min(Mg)
here maz(Mg) and min(Mg) are the the values of the
maximum and minimum elements in Mg(4), respectively. Mg
are the scaled energy map in the same dimension with Mg.

For more accurate localization, it is meaningful to upsample
the energy map into a larger spatial size from H x W (normally

(6)
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6 x 6 or 7 x 7), which is denoted as:
Mg = bilinear(Mg) (7)

we used bilinear interpolation as the upsampling technique.
And the size of Mg is set to 25 x 25 in all the CNN models
in this paper.

2) Energy Map Structuration: After finishing the above
preparations, we obtain an scaled energy map My that can
quantitively describe the patch-wise importance degree of the
global image. As well as we know, it is complicated to
implement the search in 2-D space. Therefore, we further
aggregate the scaled energy map into two 1-D structured
energy vectors, V,, € RW and V}, € R¥, along the spatial
height and width by:

H
Vw = E ME(Z’ W)7
ZI;/O i (8)
Vi = E)ME(HJ')’
Vw and Vj, are the structured interpretation of Mpg. Energy
map structuration has two advantages. On one hand, it greatly
improves the search efficiency to translate the boundary search
in the 2-D energy map into the search in two 1-D energy
vectors. On the other hand, it can realize decoupling in 2-
D space by the separate search along the spatial width and
height.

3) Greedy-Like Boundary Search: Based on V,, and Vj,
[x1,22] and [y1,y2] can be calculated respectively. In order
to quickly and accurately locate the most important 1-D area
in the 1-D energy vector, we present a greedy-like boundary
search method on the basis of energy.

Taking the V,, as an example, we present some concepts
containing the energy of different elements in the width vector

as:
w

Ep.w) = Ov(i),

e
E[rlzrz] = Z V(Z)

1=

©))

here Ejg.yy is the energy sum of all the elements in the width
vector, and Ey;, .., contains the energy of the region along
the spatial width from x; to xs.

In this paper, the key area in the global image is defined as:
the area occupies the smallest area but contains no less than a
threshold of the total energy (ETT), i.e., Ejg 0, / Ejo.w)
> FETr. ETr is a hyper-parameter of energy proportion.
On the basis of this definition, we can search the most key
region using a greedy-like algorithm, which is summarized in
Algorithm 1. The greedy-like boundary search algorithm can
be subdivided into the following three steps.

Step A: Initializing the boundary. From Line 1 to 8, firstly,
[x1, z2] are initialized by the boundary of the half of V, having
the maximum energy.

Step B: Adjusting the boundary. Then the boundary of
[1, 22] are adjusted iteratively to make its energy converge to
a small neighbor of ET'r. There are two states after Step A:
from Line 9 to 16, energy of the initialized area of [x1,x2]
is higher than ET'r; from Line 17 to 24, the energy is lower

than E'T'r. When the energy is higher than ET'r, the region of
[1, 22] needs to shrink until the energy is no higher than ET'r
along the direction of the slowest energy drop. However, when
the energy is lower than ET'r, the region needs to enlarge until
it is no lower than ETr along the direction of the fastest
energy rise. Our greedy-like boundary search can find the
smallest but most informative area quickly.

Step C: Scaling the boundary. Because the above bound-
aries are in the range of [0, W], as shown from Line 26 to 27,
it is necessary to scale them to [0, 1] by the dimension of the
energy vector.

The width boundary of the most key area in a global
image, which is [z1, 23], can be obtained by the above three
steps. And the height boundary of [y1,y2] can be obtained
similarly by using the same algorithm. The entire boundary
of [x1, z2, Y1, yo| is used to guide the key local area sampling
process.

Algorithm 1 Greedy-Like Boundary Search.

Input: Structured width vector V,, € RW;
Output: The scaled width boundary of the key area: [z, x2];

1: x1 <0

2: Tg < W/2

3: for i =0 — W/2 do

4 if E[xlzxg] < E[i:i+W/2] then
5: T 41

6 To < 1+ W/2

7 end if

8: end for

9: if E[zlzxz]/E[O:W] > ETr then

10: while Ep,,...,1/ Ejo.w) > ETr do

11: if Vw(xl + 1) < Vw(l‘g — 1) then
12: x1 11+ 1

13: else

14: To +— a9 —1

15: end if

16: end while

17: else

18: while E[xl:xg]/E[O:W] < ETr do

19: if Viy(z1 — 1) > Vyy(z2 + 1) then
20: T, 21— 1

21: else

22: T —xo+ 1

23: end if

24: end while

25: end if

26: 1 < xl/W x 100%
27: To < x2/W x 100%
28: return [z, x2]

C. Global-Local Two-Stream Architecture

According to the scaled boundary of [z1, Z2, Y1, Y], We can
sample the key local area I; € R3*224X224 ip the enlarged
global image I ;] € R3x448x448 1y bilinear interpolation
technology, which is denoted as:

’

I = bilinear (1, (x1,72,y1,Y2)) (10)
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The global and local classification scores of S, and S; are
calculated from the global image I, € R3*224X224 anq the
key local area I;, which are formulated as:

S, =CNNy(I,) (11
Sy = CNN(I,) 12)

Both CN N, and C'N N, are the cascade of Eqn (1)-(4). These
two streams have the same structure but do not share the
parameters in order to extract the features of different scales.
The fused calssification score is the average of S, and S; as:
. S,+S
Sy = % (13)

IV. EXPERIMENTS

In this section, the remote sensing image scene data sets and
the evaluation metrics used in this paper are introduced firstly.
Secondly, the experiment setup and training hyper-parameters
are provided in detail. Following that, an example of the
visualization of the proposed SKAL is shown for auxiliary
interpretation. Finally, we report the experimental results on
each data set with the comparison with some state-of-the-art
methods, and analyse the performance of our SKAL based
global-local two-stream architecture.

A. Data Sets and Evaluation Metrics

1) UC Merced Land-Use Data Set: The UC Merced (UCM)
land-use data set [18] consists of 2,100 images that are split
into 21 typical land-use scene classes of agricultural, airplane,
baseball diamond, beach, buildings, chaparral, dense residen-
tial, forest, freeway, golf course, harbor, intersection, medium
residential, mobile home park, overpass, parking lot, river,
runway, sparse residential, storage tanks, and tennis courts.
Each class contains 100 optical images measuring 256x256
pixels, and each pixel has a spatial solution of 30 cm in the
RGB color space.

2) RSSCN7 Data Set: The RSSCN7 data set contains
2800 images that are made up of seven typical scene classes
including the grassland, forest, farmland, industrial region,
lake, parking lot, residential region, and river. Each class has
400 images collected from the global satellite map in Google
Earth, which are individually sampled at four different scales.
Images in RSSCN7 data set are 400x400 pixels. RSSCN7 is
a challenging data set due to the changing seasons, varying
weathers and scale diversity.

3) Aerial Image Data Set: The Aerial Image Data (AID)
set [20] have 10,000 images split into 30 classes includ-
ing airport, bare land, baseball field, beach, bridge, center,
church,commercial, dense residential, desert, farmland, for-
est, industrial, meadow, medium residential, mountain, park,
parking, playground, pond, port, railway station, resort, river,
school, sparse residential, square, stadium, storage tanks, and
viaduct. Each class has hundreds of large-scale images mea-
suring 600x600 pixels in the RGB space. Each pixel has
the spatial resolution of the range from 800 cm/pixel to 50
cm/pixel.

4) NWPU-RESISC45 Data Set: The NWPU-RESISC45
data set contains 31,500 images split into 45 classes, including
airplane, airport, baseball diamond, basketball court, beach,
bridge, chaparral, church, circular farmland, cloud, commer-
cial area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island,
lake, meadow, medium residential, mobile home park, moun-
tain, overpass, palace, parking lot, railway, railway station,
rectangular farmland, river, roundabout, runway, sea ice, ship,
snowberg, sparse residential, stadium, storage tank, tennis
court, terrace, thermal power station, and wetland. Each class
has 700 images of 256x256 pixels with the spatial resolution
of the range from about 300 cm/pixel to 20 cm/pixel in
the RGB color space. It is the largest remote sensing scene
classification data set in terms of the number of images and
classes so far, and is more challenging because of the higher
between-class similarity.

B. Evaluation Metrics

The following two typical metrics are used to quantitatively
evaluate the experimental results.

1) Overall Accuracy: The overall accuracy (OA) is defined
as the number of the correctly classified images divided by the
total number of images in the data set. The score of OA reflects
the overall performance of classification models instead of per
class.

2) Confusion Matrix: The confusion matrix (CM) is an
two-dimension informative table which is used to analyze
the between-class classification errors and confusion degree.
Each row of the matrix represents all the image samples of a
predicted class while each column represents the samples of
a ground-truth class.

To obtain reliable experimental results, on UCM, RSSCN7
and AID data sets, we repeated the experiments for five times
using the same training ratio to randomly split the data set, and
report the mean value and standard deviation of these results.
On NWPU-RESISC45 data set, the number of repetitions is
three due to the large number of samples.

C. Experiment Setup

1) CNN Baselines: To evaluate the effectiveness and ro-
bustness of the SKAL based global-local two-stream architec-
ture in scene classification of remote sensing images, the com-
parative experiments are conducted on the aforementioned four
data sets based on three kinds of widely used CNN models,
including AlexNet [15], GoogleNet [17] and ResNetl8 [16]
pretrained on ImageNet [50]. AlexNet is composed mainly
of convolutional layers, GoogleNet concatenates filters with
different sizes, and ResNets have residual connections. When
they are used for the key area calculation, their classifiers
(fully-connected layers) are removed and the final multi-layer
feature maps are upsampled to 25 x 25 x C (25x25 is the
spatial size and C' is the dimension of feature map) for more
accurate location. Here the technology of replacing the last
layer of a model pretrained on ImageNet is widely used
strategy [38], [51], [52].
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2) Training Parameters: Adam algorithm [53] is selected
as the optimizer and cross entropy loss is used as the loss
function for all the models. All the models are trained for
50 epochs with the batch size set to 64. Learning rate of
Adam is initialized to le-4, and it is divided by 10 every 20
epochs. As for the size of input images in global-local two-
stream architecture, the input of global stream is the global
image resized to 224x224, while the input of local stream
is the local area, which is cropped from the enlarged global
image of 448x448, and then resized to 224x224. For fair
comparison, the state-of-the-art CNN models compared with
our two-stream architecture are all based on the input size of
224 x224.

3) Data Augmentation: Because of the scale difference of
the global and local images, the data augmentation methods
of these two streams are different. For global stream, we
use random horizontal flipping to augment the global images.
For local stream, besides random horizontal flipping, we
randomly crop a square area from the global image for local
image augmentation. In order to keep the scale of the local
images consistent during training and testing, the side length
proportion of the square area is set to 50%.

4) Training and Test Procedure: We adopt two-stage train-
ing strategy to individually train the global and local streams.
The global stream is trained and tested firstly, and provide
a preliminary scene classification score based on the global
image. Then the local stream is trained by the augmented local
samples, and give another score based on the key local area.
Finally these two scores are fused by average operation.

In addition, all the experiments are implemented by Pytorch
[54] 1.1.0 Version in the computing environment of 64-GB
memory CPU and 1x 12-GB NVIDIA GeForce GTX 1080Ti
GPU.

D. Visualization of SKAL

For intuitive understanding of our SKAL in Algorithm 1, a
complete process of SKAL based on GoogleNet on a remote
sensing image in UCM data set is shown in Fig. 4. For
better explanation, all the coordinates of width and height are
enlarged to the range of [0, 25] from [0, 1]. ET'r here is set to
60%.

In Fig. 4, the energy map is extracted from the original
global image by Eqn (1), Eqn (5)-(7). And the initialized
area of width and height, i.e. [z1,22,y1,y2]=[3, 15, 7, 19],
are obtained. Their initialized energy ratios are 69% and
52%, respectively. Because of the independence of the area
searching process of spatial width and height, width [z, x2]
and height [y, y2] are separately adjusted. Firstly, height area
[y1,y2] is iteratively enlarged to [5, 19] from [7, 19] with
the energy ratio increasing from 52% to 62%. Secondly, the
width area [z, x2] is iteratively shrunk from [3, 15] to [4, 14]
with the energy ratio decreasing from 69% to 59%. Therefore,
the final key area of [Zinit, Tinit, Yinit, Yinit) 18 [4, 14, 5, 19].
After being scaled, this boundary is used for the guidance of
the key area sampling.

Results in Fig. 4 indicate that the local image covers the
most informative area in the global image, with the energy

ratio of the structured vectors quickly converging to a small
neighbor of 60%.

More localization samples are shown in Fig. 5 and Fig.
6. Fig. 5 shows some samples of discriminative classes
which reflect the reasonable effect of key area location.
Fig. 6 provides some samples of three ambiguous cat-
egories of “sparse_residential”, “medium_residential” and
“dense_residential”. In Fig. 6, “sparse_residential” pays atten-
tion to the individual building, “medium_residential” focuses
on the interface of buildings and trees, and “dense_residential”
emphasizes a piece of houses next to each other which may
be judged by the junction of houses.

E. In Comparison With Other Methods

1) UCM Data Set: UCM data set is the earliest and the
most widely used remote sensing scene classification data
set. Thus we first apply the SKAL based global-local two-
stream architecture on UCM to explore the improvement of
classification performance, and find a reasonable value of
ETr. We make a hyperparameter tuning study based on
AlexNet, ResNetl8 and GoogleNet with ETr set to 60%,
70% and 80%, respectively. The ratios of training samples
are 50% and 80%, which follow the splitting convention of
UCM data set. Our results are shown in Table 1. In the Table,
the CNN models attached by the subscripts of global, local
and global + local represent only the global stream (baseline),
only the local stream and both of them, respectively.

According to the results, our SKAL based global-local two-
stream architecture can provide a significant improvement for
the classification of UCM data set under two kinds of splitting
ratios. And it can be found that our method is not limited
by the CNN models. Among the three CNN models, the
performance of AlexNet obviously falls behind GoogleNet
and ResNetl8. Compared with ResNetl8, there are some
multi-scale convolutional blocks in GoogleNet, which is more
suitable for our SKAL based two-stream method. Hence, when
our two-stream architecture is applied, GoogleNet is slightly
ahead of ResNetl8.

We also make a comparison between the global stream and
local stream as shown in Table 1. Although the performance of
local stream is far worse than the global stream, their fusion
result is better than only the global stream. This phenomenon
demonstrates the independence in feature extraction of the
global stream and local stream, that is, the former extracts
the global scene features while the latter mines the local key
features. Besides, it is probably that the global stream plays a
major role in the decision-making process and the local stream
makes the compensation for it: if global stream has an clear
classification judgment, local stream can enhance the result
of global stream; on the contrary, if global stream hesitates
between some ambiguous categories, local stream focusing
on the enlarged key area can correct the possible mistaken
classification results of global stream. As we can see in the
table, the promotion effect decreases with the increase of local
area, because the local features tend to be homogenous with
the global features when the local area expands. Therefore
it is necessary to limit the local area in a reasonable range,
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Fig. 5: Some samples of key area localization based on SKAL in NWPU-RESISC45 data set. The images from top to bottom
are the following: original image, energy map and the fusion image labeled by the bounding box.

which is determined by ETr. Too small threshold leads the
loss of useful local features while too big threshold decreases
the discrimination of the local features. It could be found that
all of 60%, 70% and 80% work well, but 70% is the best in
most cases. In the following experiments, ETr is set to 70%
by default.

Based on the comparison experiments of global and
global + local, the training and test time of the proposed
SKAL based two-stream architecture on UCM data set is
explored, and the results are provide in Table II. Because local

stream needs the bounding box of key area which depends
on global stream, there is no the corresponding time cost
of only local. During the training stage when images are
trained in a mini batch of 64 for 50 epochs, the training
time of global mainly contains feature extraction and gradient
backward propagation in only global while the training time of
global+local includes the feature extraction in global, SKAL,
and the feature extraction and gradient backward propagation
in local stream. According to this table, it could be found
that the training time of global + local is just a few more
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(a) sparse_residential_1

Fig. 6: Some samples of three ambiguous categories,

(b) sparse_residential_2 (c) medium_residential_1 (d) medium_residential_2 (e) dense_residential_1

(f) dense_residential_2

including “sparse_residential”, “medium_residential” and

“dense_residential”, in UCM data set. The images from top to bottom are the following: original image, energy map and

the fusion image labeled by the bounding box.

TABLE I: OA(%) based on different CNN baselines with different training ratio and E7r on the UCM data set.

Methods 50% images for training 80% images for training
ETr=60% ETr=70% ETr=80% ETr=60% ETr=70% ETr=80%

AlexNetgiobal 91.384+0.52 91.38+0.52 91.384+0.52 | 96.31+0.12 96.314+0.12 96.31+0.12
AlexNet;ocar 82.72+0.34 86.81+0.14 86.86+0.09 | 85.60+0.36 90.36+1.07 88.69+0.12
AlexNetgiobal+iocal 93.10%1.00 93.77+1.28 93.484+0.71 | 97.384+0.24 97.38+0.48 97.02+0.12
ResNet18g;0pa1 97.431+0.19 97.43+0.19 97.431+0.19 | 99.05+0.24 99.05+0.24 99.05+0.24
ResNet18;5cq: 92.57+0.19 95.48+0.05 94.661+0.66 | 93.45+1.31 96.431+0.24 97.03+0.59
ResNet18iopai+10car | 97.81£0.10 97.951+0.05 98.151+0.05 | 99.524+0.24 99.5240.24 99.28+0.24
GoogleNetgiopai 97.76+0.19 97.76+0.19 97.76£0.19 | 98.81+0.71 98.81+0.71 98.81+0.71
GoogleNet;ocq1 91.814+0.48 95.53+0.09 95.2440.19 | 94.2940.71 96.08+0.59 96.431+0.48
GoogleNetyiobal+iocal | 97.904+0.10 98.19+0.05 98.144+0.24 | 99.41+0.36 99.70+0.30 99.411+0.36

than local. If the time of feature extraction in local is taken
into consideration, the time cost of SKAL in global + local
could be relatively ignored. During the testing stage when the
images are test one by one, the test time of global mainly
consists of image loading feature extraction of global while
there are extra time cost of the proposed SKAL and feature
extraction in local. Although the model size of global + local
is twice as big as global, test time of the former is less than
twice time cost of the latter. It probably is caused by the image
loading, and it also suggests that the proposed SKAL does not
take the noticeable running time. Such results indicate that the
proposed SKAL has a low computational complexity.

To objectively evaluate the performance of the proposed
SKAL based global-local two-stream method, as shown in

TABLE II: Training time of 50% images of UCM data set and
test time of the rest 50% images.

Methods Training Time | Test Time
(Second) (Second)
AlexNet;opa 123 262
AICXNetglobal+local 144 4.30
ResNet18;0p41 196 375
ReSNetlgglobal+local 236 6.40
GoogleNet;ppai 209 331
GoogleNetgiobal+iocal 255 6.44

Table III, we make a comparison of OA(%) with some state-
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of-the-art methods on UCM data set, including handcrafted
feature based methods, unsupervised feature based methods
and deep feature based methods. As we can see in Table III,
our method significantly outperforms all the other state-of-
the-art scene classification methods. When 50% images are
used for training, our two-stream method wins the first place
with an obvious increase of 1.38% over the second method
of ARCNet-VGG16 [8]. When the training ratio increases to
80%, compared with the third method of ARCNet-VGG16 [8],
our GoogleNet based two-stream architecture has an signifi-
cant gain of 0.58%, in consideration of the near 100% OA.
Although Resnet101-FSL [6] is much deeper and bigger than
GoogleNet, our global-local two-stream architecture based
on GoogleNet still outperforms Resnetl01-FSL. It can also
be found that our method has huge advantages in terms of
classification accuracy than the handcrafted feature methods
[55], [56] and unsupervised methods [30].

TABLE III: Comparison of OA(%) with some state-of-the-art
results on UCM data set.

Methods ‘ 50% training ‘ 80% training
AlexNet 91.38+0.52 | 96.31+0.12
AlexNetgobal+iocal 93.77+£1.28 | 97.38+0.48
ResNet18 97.43+0.19 | 99.05+0.24
ResNet18iobai+1ocal 97.95+0.05 | 99.524+0.24
GoogleNet 97.76+0.19 98.81£0.71
GoogleNetgiopaitiocal 98.19+0.05 | 99.70+0.30
Resnet101-FSL [6] — 99.52

ARCNet-VGG16 [8] 96.81+0.14 | 99.12+0.40
DDRL-AM [9] — 99.05+0.08
SF-CNN with VGGNet [13] — 99.05+0.27
MSCP [57] — 98.36+0.58
ELM based Two-Stream [11] 96.97+0.75 98.02+1.03
TEX-Net-LF [12] 96.91+0.36 | 97.72+0.54
Combing Scenarios I and II [38] — 98.49

Fusion by Addition [58] — 97.42+1.79
CNN-NN [59] — 97.19

SalM3LBPCLM [55] 94.21+0.75 | 95.75+0.80
VGG-VD-16 [20] 94.14+0.69 | 95.21+1.20
MS-CLBP+FV [56] 88.76+0.76 | 93.00+1.20
Unsupervised Feature Learning [30] — 81.67+1.23

Moreover, as shown in Fig. 7, we make two CMs of
GoogleNet and the corresponding two-stream architecture to
further analyze the improvement of each class of UCM data
set. As it can be observed in Fig. 7, there are some mis-
classified samples among the scenes of medium_residential,
dense_residential, buildings, storage_tanks and intersection.
When the proposed two-stream architecture is applied, the
number of the misclassified samples and scenes decreases
rapidly, which proves the effectiveness of our method.

2) RSSCN7 Data Set: RSSCNT7 data set is a difficult remote
sensing scene data set, affected by the changing seasons,
various weathers and scale diversity. These problems challenge
the stability and robustness of the proposed global-local two-
stream architecture in key local area localization. To study the
performance of our method in dealing with these problems,
the comparative experiments are conducted based on AlexNet,

ResNet18 and GoogleNet (with ETr set to the default value
of 70%), and the experimental results of OA(%) are reported
in Table IV. In the table, the subscript of global is removed
and the results of the local streams are not provided for more
clear comparison.

Table IV results indicate that the increase of about 2% is
obtained when the proposed two-stream architecture is applied
over these three CNN baselines. The wide and meaningful
improvement powerfully supports the stability and effective-
ness of our method. Especially, when the CNN baselines are
limited by the lack of training data, the local images can also
be regarded as the extra training samples from the perspective
of data augmentation. Compared with all the state-of-the-art
methods, the proposed method has a huge advantage in the
results of OA. Our global-local two-stream architecture based
on ResNetl8 wins the first place and has the accuracy gain
of 1.44% under the training ratio of 20%, and 2.04% under
the training ratio of 50%, over the second method of Resnet50
based TEX-Net-LF [12].

To study the performance of each class in RSSCN7 data
set based on the proposed two-stream architecture, the CM
is made as shown in Fig 8. According to this CM, it can be
found that the missclassified samples are mainly distributed
in the scenes of industry, parking, grass and field. There are
large intraclass diversity and high interclass similarity in these
scenes, which need to be solved in the future work.

TABLE IV: Comparison of OA(%) with some state-of-the-art
results on RSSCN7 data set.

Methods ‘ 20% training | 50% training
AlexNet 88.5940.36 91.97+0.17
AlexNetgiobal+iocal 90.81+£0.15 93.35+0.35
ResNet18 91.81£0.40 94.61£0.75
ResNet18 gi0pai+10cal 93.89+0.52 96.04+0.68
GoogleNet 90.73£0.27 93.97+0.30
GoogleNetgopai+1ocal 93.41+0.26 95.75+0.21
Resnet50 [12] 90.23+£0.43 | 93.12Q+0.55
Resnet50 based TEX-Net-LF [12] | 92.45+0.45 94.00+0.57
VGG-M [12] 86.00+0.63 88.80+0.55
VGG-M based TEX-Net-LF [12] 88.61+0.46 91.25+0.58
Deep filter banks [60] — 90.40+0.60
CaffeNet [20] 85.57+0.95 88.25+0.62
VGG-VD-16 [20] 83.98+0.87 87.18+0.94
GoogleNet [20] 82.55+1.11 85.84+0.92
HCV [60] — 84.70+0.70
DBN based feature selection [19] — 77.0

3) AID Data Set: AID is a high-resolution large-scale re-
mote sensing scene data set covering a lot of background noise.
The comparative experiments are conducted on AID data set
based on the aforementioned three CNN baselines under the
default training settings and ETr. The results achieved by
our two-stream architecture of OA(%) are provided in Table
V, with the comparison with some state-of-the-art results. It is
notable that the state-of-the-art results of CNN-based methods
on AID data set reported in this paper are based on the image
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(b) GoogleNet based two-stream architecture

Fig. 7: Confusion matrix of UCM Data Set under the training ratio of 80% using the following two methods: GoogleNet
(global stream) and the proposed SKAL based global-local two-stream architecture based on GoogleNet.
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Fig. 8: Confusion matrix of RSSCN7 Data Set under the
training ratio of 50% using the proposed SKAL based global-
local two-stream architecture based on ResNetl8.

size of 224 x224 within a small variance, because image size
has an important influence on the classification accuracy.

Results of Table V indicate that the proposed global-local
two-stream architecture provides two kinds of advantages for
CNN baselines. On one hand, our two-stream architecture sig-
nificantly and widely improves the performance of all the three
CNN baselines. And our global-local two-stream architecture
based on ResNetl8 outperforms all the current state-of-the-
art methods, with the advantage of at least 0.78% in OA
under the training ratio of 50% and 0.57% under the training
ratio of 20%. On the other hand, our two-stream architecture
reduces the standard deviation of experimental results and
provides more stable classification accuracies although the
training images are randomly selected from the data set for
several times.

In order ot evaluate the performance of the proposed method
on AID data set, we make a CM in Fig. 9, which is achieved by
the global-local two-stream architecture based on ResNetlS8.
As shown in this CM, the most easily misclassified scenes
are park, resort, railway station, square, school and center. All
of them are strongly related to the plenty of buildings and
vegetation cover. These highly similar features and objects
limits the further improvement on AID data set, and this

TABLE V: Comparison of OA(%) with some state-of-the-art
results on Aerial Image Data Set.

Methods ‘ 20% training ‘ 50% training
AlexNet 85.30+£0.48 | 90.75+0.41
AlexNetgiopaitiocal 88.264+0.27 | 92.5440.12
ResNet18 93.36+0.12 | 95.514+0.31
ResNet18g;opai+1ocal 94.38+0.10 | 96.76+0.20
GoogleNet 93.12+0.31 95.64+0.18
GoogleNetgiopaitiocal 94.26+0.15 96.654+0.11
Resnet101-FSL [6] — 95.88
Resnet50 based TEX-Net-LF [12] 93.81+0.12 95.734+0.16
ELM based Two-Stream [11] 92.32+0.41 94.58+0.25
VGG-VD16 + MSCP [57] 91.52+40.21 94.42+0.17
ARCNet-VGG16 [8] 88.75+0.40 | 93.10£0.55
VGG-M based TEX-Net-LF [12] 90.87+0.11 92.96+0.18
Fusion by Addition [58] — 91.87+0.36
SalM3LBPCLM [55] 86.924+0.35 | 89.76+0.45
VGG-VD-16 [20] 86.59+0.29 | 89.64+0.36
CaffeNet [20] 86.86+0.47 | 89.53+0.31
MS-CLBP+FV [55] 86.48+0.27 —
GoogLeNet [20] 83.444+0.40 | 86.39+0.55

problem could be improved by deeper and more complex
feature representation.

4) NWPU-RESISC45 Data Set: NWPU-RESISC45 is the
biggest remote sensing data set of scene classification with
45 challenging scenes. Benefiting from the large amount of
training data, the classification results of NWPU-RESISC45
are more stable and convincing. We conduct the ablation ex-
periments on NWPU-RESISC45 under the same experimental
conditions of CNN baselines, training settings and ETr as the
previous three data sets.

We make the comparative experiments with/without the
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Fig. 9: Confusion matrix of Aerial Image Data Set under the
training ratio of 50% using the proposed SKAL based global-
local two-stream architecture based on ResNetl8.

TABLE VI: Comparison of OA(%) with some state-of-the-art
results on NWPU-RESISC45 Data Set.

Methods ‘ 10% training ‘ 20% training
AlexNet 77.44+£0.28 | 83.6910.25
AlexNetgobal+iocal 80.284+0.16 | 85.3440.14
ResNet18 88.914+0.23 | 91.77+0.18
ResNet18 gio0bai+10cal 90.04£0.15 | 92.7940.11
GoogleNet 89.40+0.25 | 91.93+0.16
GoogleNetyiobaitiocal 90.41+0.12 | 92.95+0.09
SF-CNN with VGGNet [13] 89.89+0.16 | 92.55+0.14
ResNet-18 + AM + CL [9] 92.17+0.08 | 92.46+0.09
VGGNet-16 + RIFD [61] 90.12 92.27

D-CNN with VGGNet-16 [14] 89.2240.50 | 91.894+0.22
VGG-VDI16 + MSCP + MRA [57] 88.07+0.18 | 90.81£0.13
SAL-TS-Net [62] 85.02+0.25 | 87.01£0.19
TEX-TS-Net [62] 84.77+0.24 | 86.36+0.19
ELM based Two-Stream [11] 80.224+0.22 | 83.16+0.18
AlexNet [21] 76.69+£0.21 | 79.8540.13
BoVW + SPM [21] 27.83+0.61 | 32.961+0.47
LBP [21] 19.20+0.41 21.744+0.18

proposed two-stream architecture, and make a comparison of
OA(%) with some state-of-the-art methods, which are shown
in Table VI. According to the results, our GoogleNet based
global-local two-stream architecture wins the second place
under the training ratio of 10% and the first place under 20%.
The current best method of ResNet18 + AM + CL [9] has an
OA gain of 0.29% when training ratio increases from 10% to
20%. However, our GoogleNet based two-stream architecture
has an OA gain of 2.54%, which indicates that our method has
better potential of OA with the increase of training samples.
The CM of our ResNet18 based two-stream architecture is
reported in Fig 10. The samples most likely to be misclassified
mostly belong to the classes of freeway, church, railway

station, industrial area, palace, commercial area, wetland, river
and medium residential. There are lots of confusing objects
and features among these scene classes that limits the OA.

V. CONCLUSION

In this paper, we propose a structured key area localization
(SKAL) strategy to localize the most important area in remote
sensing scene images. Based on SKAL, a global-local two-
stream architecture, which can individually extract the global
and local features, is further presented for scene classification
of remote sensing images. To verify the effectiveness and ro-
bustness of the proposed SKAL based global-local two-stream
architecture, we conduct a lot of comparative experiments
based on three kinds of widely used CNN models, including
AlexNet, ResNetl8 and GoogleNet, on four popular remote
sensing scene data sets, and achieve all the state-of-the-art
results of these data sets. The experimental results demonstrate
the powerful capability of the joint global and local feature
representation of the proposed method, which can solve the
problem of large scale variance in remote sensing scene images
to some extent.
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